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Abstract—This paper presents a new version of Davies-

Bouldin index for clustering validation through the use of a new 

distance based on density. This new distance is used as a 

similarity measurement between the means of the clusters, with 

the purpose of overcoming the limitations of the Euclidean 

distance. The new distance proposed allows considering the 

distribution of the data set and to approximate in a more 

accurate way the separation between clusters through the 

estimation of the densities along the line segments that connect 

the centroids.   

Keywords—Clustering; Davies-Bouldin Index; Density; 

Cylindrical Distance. 

 Introduction  

The process of clustering consists on classifying in an 
unsupervised way a set of patterns (observations or data) into 
groups (clusters) [1]. In general, the clustering methods should 
search for clusters whose members are close to each other (in 
other words have a high degree of similarity) and well 
separated [2]. 

One of the most important issues in cluster analysis is the 
evaluation of clustering results to find the partition that best fits 
the underlying data. This is the main subject of clustering 
validation [2]. 

 In general, there are three approaches to investigate 
clustering validation: external criteria, internal criteria and 
relative criteria [3].   

 Clustering validation approaches, which are based on 
relative criteria, aim at finding the best clustering scheme that a 
clustering algorithm can define under certain assumptions and 
parameter. Here the basic idea is the evaluation of a clustering 
structure by comparing it to other clustering schemes, resulting 
by the same algorithm but with different parameter values [4].  
The Davies-Bouldin index falls into the latter category. Such 
indexes are used when the partitions generated by the applied 
clustering algorithm are no overlapping, meaning by this that 
each data belongs strictly to an only one class [4]. 

 The Davies-Bouldin index is based on the approximately 
estimation of the distances between clusters and their 
dispersions to obtain a final value that represents the quality of 
the partition. One of the statistics used to estimate the distances 
between the clusters is the Euclidean distance between the 

means. The problem with this statistic is that it doesn't consider 
the geometry of the clusters; instead it reduces the estimation to 
the Euclidean distance between representative points (the 
means).  As a result, two clusters with means very closed each 
other will be considered very close even if their data are not.   

 In order to overcome these limitations, this paper proposes 
a special type of distance, the cylindrical distance, which is 
used to calculate the distance between the means. 

 This distance tries to capture the data density along the 
straight lines that connect the means, and through this, to 
estimate how closed are the clusters as a whole.  

 This technique is validated by comparing its results with 
the original version of the index over real datasets. 

  This paper presents the following structure: first a 
description of the original index and its limitations and related 
works. Then, the cylindrical distance and the new version of 
the index proposed are explained. Afterword is presented the 
comparative performance of the original index and the new 
version proposed, and finally the conclusions and future works. 

I. DAVIES-BOULDIN INDEX 

A. Definition 

This index (DB) is based on the idea that for a good 
partition inter cluster separation as well as intra cluster 
homogeneity and compactness should be high [5]. Then, to 
define the DB index, we need to define the dispersion measure 
and the cluster similarity measure [6]. In [1] the dispersion Si of 
Ci cluster (1) and the separation Dij between ith and jth clusters 
(2) are defined as: 
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Where |Ci| is the number of data points in cluster Ci and ci 
is the center of cluster Ci, and: 
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Where vi and vj are the centroids of clusters Ci and Cj, 
respectively. Then, the DB index is defined as: 
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Where k is the number of clusters and Ri is defined as: 

                      
ij

ji
i RR


 max

                                 (4) 

Where Rij is the similarity measure between clusters Ci and 
Cj, and is defined as: 
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Since the goal is to achieve minimum within-cluster 
dispersion and maximum between-cluster separation, the 
number of clusters c that minimizes VDB is taken as the optimal 
value of c [5]. 

B. Limitations of the Original Proposal 

Essentially, the main limitation of the original proposal is 
that none of its terms considers the geometry of the spatial 
distribution of the clusters. This limitation is directly related to 
the use of the means to measure the distances between the 
clusters. 

Specifically, the use of means as a measure of distance 
between clusters fails when they have differences variances, or 
the variances are not equal in all axes.  

Using the Euclidean distance between the means to 
calculate the distances between the clusters can lead to 
situations where two clusters whose geometries are close but 
its means are far from each other will be considered more 
distant than two clusters whose geometries are more distant but 
its means are closer. This situation is illustrated in Fig. 1. 

Another limitation of the use of the Euclidean distance 
between the means is its inability to distinguish when it is 
measuring distances between centroids that represent genuine 
clusters, from situations where it is in front of centroids that 
represent a partition that it is really dividing a genuine one. The 
Fig. 2 gives an example of two different configurations where 
the Euclidean distance between the means are equal, but 
actually in only one of them the centroids represents genuine 
well separated clusters. 

 

Fig. 1. The image shows two clusters with closer geometries but more distan 

means (blue and green clusters) and the opositte situation (blue and 
brown clusters). 

 

 

Fig. 2. The images show two configurations where the distance between the 

centroids are equals, but in one of them (a) the centroids belong to the 

same cluster, and in the other (b) the centroids belong to a well separated 
clusters. 

     A final example of the limitations of the index are 

ilustrated in Fig. 3. These images show two diferent 

configurations of clusters. In the first configuration (a) the 

clusters have a maximum variance vector along the horizontal 

axe. The second one (b) is the result of rotating the maximum 

variance vectors of the first configuration to a vertical 

position. As a result, both configurations have the same means 

and the same dispersions,  and as a consecuence the value of 

the Davies-Bouldin index will be the same for both, even if in 

the second configuration (b) the clusters are more well 

separated than in the first one(a). 

 

 

Fig. 3. The images show two configurations of clusters with the same means 

and dispersion, but with diferent orientations of the  maximum variance 
vectors. Both have the same Davies-Bouldin index value. 

II. RELATED WORKS 

In [5] the Davies-Bouldin index is generalized through the 
use of graphs. Specifically, they use Minimal Spanning Tree 
(MST), Relative Neighborhood Graph (RNG) and Gabriel 
Graph (GG). However, these graphs are used only to obtain the 
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dispersion of each cluster, while the measurement of distance 
between clusters is still the distance between the means. For 
this reason, those approaches are not considered equivalent to 
this project, because they tackle another problem of the Davies-
Bouldin index. Instead, they are considered complementary, 
and will not be used in the evaluation of the new version. 

Respect to distances based on density, there is a group of 
clustering algorithms bases on density, where clusters are 
defined as dense regions separated by low-density regions [6]. 
Examples of these algorithms are DBSCAN [9] and BRIDGE 
[10].  In these algorithm the concept of density is used for 
determine a relation of connectivity of data points that belong 
to the same cluster rather than to define a new measure of 
distance for replacing the Euclidean one.  

III. THE PROPOSAL 

The proposal presented in this paper consists in a new 
distance, called cylindrical distance, which is used to measure 
the distance between the means, instead of the Euclidean one. 
The main idea behind this distance is to capture the data 
density in a limited region of the space around the straight line 
that connects the means, as it is illustrated in Fig. 4. This region 
is determined by a parameter, the radius. All data that are 
located in a distance, from the straight line that connects the 
means, equal or less that the radius, and whose projections to 
this segment is perpendicular, are considered to belong to this 
region, and used in the final calculation of the cylindrical 
distance. This process is illustrated in Fig 5. 

 

Fig. 4. The image shows an example of a region R generated to measure the 

cilyndrical distance between two centroids (red and black circles).   

  

  

Fig. 5. The images show graphically the process of creation of the 

cylindrical region R, first (a) the two data points of which the distance is 

to be calculated are selected (p1 and p2). Then (b) the line segment that 
connects both data points is built, and finally (c) using the parameter r 

(radius) the region is built and the data points that fall inside  are used 

for the distance estimation (d).  

A. Definition of Cylindrical Distance  

Let D be the dataset of n dimensions. 

Let d be any data point that belongs to the dataset D. 

Let p1, p2 be the data points of which the distance is wanted 

to be determined.  

Let L(p1, p2) be the length of the line segment that has p1 

and p2 as its extremes. 

Let E(d, p1, p2) be the Euclidean distance between the data 

point d and the line segment determined by the data points p1 

and p2. 

Let R(r, p1, p2) be the region that is determined by the 

parameters  p1, p2 and r, where p1 and p2 corresponds to the 

beginning and the ending of a line segment, and r the radius 

that determines the limits of the region R.  

Let P(d,p1,p2) be the angle between the line segment 

determined by the data points p1 and p2, and the shortest line 

that connects the data point d with that line segment. 

Let C be the subset of data points that belong to the region 

R, defines as: 
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 Let ρ(R) the relative density of the region R(r, p1, p2), 

defined as: 
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Where   |C| corresponds to the cardinality of the subset C. 

Then the cylindrical distance θ(r, p1, p2) is defined as: 
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Meaning that denser the region R is, closer will be the data 

points considered. As a result of the definition of the relative 

density of R, ρ(R), if this region does not contain any data 

point, then the value of the cylindrical distance is equal to the 

value of the Euclidean distance between p1 and p2. 

 

B. Determination of the set of Data Points in R 

To obtain the data points that belong to the region R is 
necessary to determine first, which data points have a 
perpendicular projection over the line segment determined by 
p1 and p2, the data points of which the distance is to be 
calculated. To perform this, it is used the law of the cosines. 
The use of this law has the advantage that allows avoiding the 
complexities of working with geometries of high dimensions, 
and at the same time, it generalizes the algorithm to different 
features spaces.  

To apply this law a triangle whose vertices are p1, p2 and 
the data point d, whose membership to the region R is to be 
determined, is built, as illustrated in Fig. 6. Then, the lengths of 
the sides of the triangle are calculated, and finally, the law of 
the cosines is applied with the purpose of obtaining the 
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measures of the inner angles of the triangle. If the two angles 
between the line segment 

21 pp  and the two sides of the triangle 

dp1
 and dp2  are not greater than π/2, then the data point d has a 

perpendicular projection over the central line segment of the 
region R.  If it is the case, the second condition to belong to this 
region it is the length of that projection (the line segment 
conformed by the data point d and the nearest point of the 
central line segment) is not greater than the parameter r, the 
radius of the region R. 

 

  

Fig. 6.   The images show the two different configurations of the triangles 

made by the data points of which the distance is to be calculated (p1 and p2) 

and a data point belonging to the data set (d).  When the data point d has a 

perpendicular projection over the base of the triangle, the inner angles of the 
base of the triangle are always less or equal than π/2 (left image). When it is 

not the case, one of these angles will be always greater than  π/2 (right image). 

C. Cylindrical Distance Algorithm 

Input: data points p1, p2, radius r, dataset D  
Begin 
  n (Number of data points belonging to R) = 0 
  Calculate the length of 

21 pp    

  For each Data Point d in D Do 
        Calculate the length of dp1

 and dp2  

        Calculate the angles α and β 
If α<=π/2 and β<=π/2 then  

Calculate E(d, p1, p2), the Euclidean distance 
between d and   

21 pp  

              If E(d, p1, p2)<=r Then 
  n=n+1 
      End If 
 End If 
    End For 
    θ=L(p1,p2)/(n+1)          
End 
 

D. Definition of the New Index 

The new index, called the cylindrical version of Davies-

Bouldin index, DB
C
, is defined as:                           
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Where k is the number of clusters and Ri
C
 is defined as: 
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Where Rij
C
 is the similarity measure between clusters Ci and 

Cj, and is defined as: 
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Where θ(r, vi, vj) corresponds to the cylindrical distance 

between the vi, the centroid of the cluster i, and vj, the centroid 

of the cluster j, and r to the radius of the cylindrical region. 

The dispersion Si of Ci cluster is defined as usual in the 

traditional Davies-Bouldin index. 

 

IV. RESULTS 

A series of experiments on different sets of test were made 
to compare the performance of the proposed version (DB

C
) 

with the original version of the Davies-Bouldin index. In the 
process of evaluation the Rand index was used, which allows 
to  measure the level of similitude between two partitions, with 
values ranging from zero (minimal similitude) to one (maximal 
similitude) [6]. Another coefficient that was used is the Pearson 
correlation coefficient. This can take values from -1 to +1. A 
value of +1 show that the variables are perfectly linear related 
by an increasing relationship, a value of -1 shows that the 
variables are perfectly linear related by an decreasing 
relationship, and a value of 0 shows that the variables are not 
linear related by each other. It is considered a strong correlation 
if the correlation coefficient is greater than 0.8 and a weak 
correlation if the correlation coefficient is less than 0.5 [7]. 

 The methodology used was the following: first, the ranges 
of values of the features of each dataset were scaled to a range 
of 0 to 100. Then, applying the clustering algorithm k-means 
with variable parameters were obtained 20 different partitions 
on each dataset used. Then, for each partition obtained, were 
calculated the original version of the Davies-Bouldin index 
(DB), the proposed version of the index (DB

C
) using 5 different 

values for the radius (3, 5, 8, 10 and 15) and the Rand index, 
with the objective to see the similitude  between the partition 
generated and the  original classes of the data set. Finally was 
obtained the Pearson correlation between each version of the 
DB index and the Rand index considering the 20 experiments. 
This process was applied over 8 different datasets. They are the 
IRIS Dataset (3 classes, 4 features and 150 instances) [8], Ecoli 
Data Set (8 classes, 7 features and 336 instances) [8], Wine 
Data Set (3 classes, 13 features and 178 instances) [8] , 
Vertebral Column Data Set (3 classes, 6 features and 310 
instances) [8], Climate Model Simulation Crashes Data Set (2 
classes, 18 features, 540 instances) [8], Glass Identification 
Data Set (6 classes, 9 features, 214 instances) [8], Page Block 
Classification Data Set (5 classes, 10 features, 5473 instances) 
[8] and an Artificial Dataset of Gaussian distributions (3 
classes, 2 features, 3500 instances). The Table 1 shows the 
values of Pearson coefficient obtained by each of the index 
evaluated. Because the objective of the Davies-Bouldin index 
and its derivatives is to be minimized, a high negative value in 
the Pearson coefficient indicates a good performance of the 
index. Those values which are highlighted indicate when the 
DB

C
 index had the best performance. 

V. CONCLUSIONS AND FUTURE WORKS 

In four of the datasets the proposed index had better results 
than the original version (Ecoli, Iris, Page and Artificial), 
showing a very good performance. In other two datasets where 
the original Davies-Bouldin index showed a good performance 
too (Wine and Climate) the results were equivalent, even with 
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the different radius used in the new version. And in the 
remaining two datasets where the original version of the index 
showed a bad performance (Column and Glass) the new 
version was not able to improve it. As a conclusion, the results 
are very promising, but, at the same time, they suggest that a 
more deep analysis is necessary for understanding the behavior 
of the index, the new version and the original one, their 
relations with the structural characteristics of the datasets and 
the influence of the clustering algorithm used for generating the 
partitions. An explanation of the occasions where the new 
index showed the same good performance than the original one 
could be that sometimes the structural characteristics of the 
datasets (and the partitions generated) make the considerations 
of the densities irrelevant, and in the occasions where the new 
index couldn't improve the bad performance of the original 
could be due to the structural characteristics of the datasets 
make impossible for the Davies-Bouldin index to obtain good 
results, and it would be a limitation to any new version based 
on it.  

As a future works, it is possible to obtain better results 
adding modification to the cylindrical distance, with the 
objective of taking a more accurate measurement of the 
densities involved, for example, modifying the region R or 
optimizing the radius value.  

 

TABLE I. 

 DB DBC 

Radius  3 5 8 10 15 

Wine -0.9360 -0.9360 -0.936 -0.936 -0.936 -0.936 

Ecoli 0.3317 0.1854 -0.0339 -0.1977 -0.4236 -0.7064 

Iris -0.3066 -0.6041 -0.8325 -0.8676 -0.6842 -0.4893 

Column 0.9302 0.2299 0.5576 0.7824 0.9114 0.9309 

Climate -0.8139 -0.8139 -0.8139 -0.8139 -0.8139 -0.8139 

Glass 0.97 0.9701 0.9648 0.7511 0.4136 0.8724 

Page 0.7454 -0.7383 -0.7469 -0.7922 -0.7588 -0.4159 

Artificial -0.9228 -0.9668 -0.9495 -0.8282 -0.7365 -0.6837 
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